Logarithmic Sobolev Inequalities on Non-isotropic

Abstract

We study logarithmic Sobolev inequalities with respect to a heat kernel measure
on finite-dimensional and infinite-dimensional Heisenberg groups. First we con-
sider logarithmic Sobolev inequalities on non-isotropic Heisenberg groups. These
inequalities are considered with respect to the hypoelliptic heat kernel measure,
and we show that the logarithmic Sobolev constants can be chosen to be indepen-
dent of the dimension of the underlying space. In this setting, a natural Laplacian
is not an elliptic but a hypoelliptic operator. Furthermore, we apply these results
in an infinite-dimensional setting and prove a logarithmic Sobolev inequality on
an infinite-dimensional Heisenberg group modelled on an abstract Wiener space.

Non-isotropic Heisenberg Groups H”

H" can be regarded as R*""! = R*" x R equipped with a non-commutative group
law given by
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(v,2) - (V',2) = V+V’,z+z’+§w (v, V)],
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w: R x R — R,
where
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is a symplectic bilinear form on R** and
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Sub-Riemannian Structure on H

For any g € I,

o a; O o a; 0
& _ Yy YW — J e =1 ... M
7(9) or; 2 Yigy T Ay, 2 Yigy T oo
Hormander’s condition:
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H"” admits a sub-Riemannian structure (H", H,(-,-)%;) where H,
Span{X?(g),Y(g) - j = 1,--+ ,n} for any g € HJ, and {X¥, Y : j
1,---,n} is an orthonormal frame for H.

Sub-Laplacian A, and Heat Kernel Measure {1/}~

Horizontal gradient:
of = L (XEHXE+ (YY), f € CF(HD).
Sub-Laplacian:

w . w\ 2 w\ 2
H‘_jgl{(Xj) —I_(}/])]
7, 1s hypoelliptic.
Hypoelliptic) Heat kernel measure {uy };~o:
t

a family of probability measure with

dpi = pr(g)dg
where py(g) is the hypoelliptic heat kenrel for A%, and dg = dz1dy; - - - dx,dy,dz
is (the) Haar measure on H”.
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Result 1 (on H")

Theorem:(Theorem 4.5 in [1])
o For f € C*(H") and t > 0,
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o ('(w,t) =C(wy)t and C (wyp) is the logarithmic Sobolev
1

constant on the isotropic Heisenberg group Hl, .

o (' (w,1) is independent of the dimension of H”!

Finite-dimensional Projection Approximation

n Finite-dimensional Projections
H” < G

H” >

“ C(w,t) independent of the dimension

Result 2 (on G)

Theorem: (Theorem 6.24 in [1])
o For feD(&)and t >0
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Heisenberg Groups

Introduction

In [4], Gross introduced and studied the following dimension-free logarithmic
Sobolev inequality, i.e.

[ Prosrau=| [ fufos| [ andu]<2 [ V1P

Rn

s

for any f € C°(R") where du(x) = gTT)%daz is the Gaussian measure on R".

[n the hypoelliptic setting, a logarithmic Sobolev ineuqality was first proved in [6]
on the three-dimensional standard Heisenberg group. Later it was generalized to

higher-dimensional settings in [3], [5], etc.

However, the (in)dependence of the logarithmic Sobolev constant on the dimen-

sion is not known in neither the standard nor the non-isotropic setting.

Infinite-dimensional Heisenberg-like Groups G

Let (W, H, 1) be a real abstract Wiener space.

The infinite-dimensional Heisenberg-like group with a one-dimensional center

(G can be regarded as W x R with a non-commutative group law given by

1
(wl, Cl) y (UJQ, 62) = Wy + wo, C1 + Cy + iw(wl, UJQ) ,

(’UJ@,CZ')EWXR,Z.:LZ,
w:WxW =R

where w is a continuous skew-symmetric bilinear form on W.

Subelliptic Laplacian L. and Heat Kernel Measure v,

Let {e;}.~, be an orthonormal basis for H.
Subelliptic Laplacian:

Lf(x):= %

J=1

for any cylinder function f : G — R.
Horizontal gradient:
egradyu . G — H of any cylinder polynomials u is defined by

(gradgu, h)yg = (h,0)u, h € H.

Heat Kernel Measure:

Vi = Law(gt)

for any t > 0 and ¢, is the Brownian motion generated by %L on G.
Dirichlet Form ¢&;:
the closure ot

E (u,v) = /(gradH u, grad ;7 v) gduvy.
G

on L? (G, ;) where u, v are cylinder polynomials.

Future Directions

Step-2 Carnot groups
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